Eignungsprüfung nach BerufsHZVO FORMELSAMMLUNG MATHEMATIK/STATISTIK

Zeichen	Sprechweise / Bedeutung	Zeichen	Sprechweise / Bedeutung
< ≤	kleiner als kleiner oder gleich	A, B, M	Mengen
> ≥	größer als größer oder gleich	{ a; b}	Menge mit den Elementen a und b
%	Prozent	Ø {}	leere Menge
] a, b [offenes Intervall von a bis b	{ x }	Menge aller x, für die gilt:
[a,b]	abgeschlossenes Intervall von a bis b	$A \cap B$	Durchschnittsmenge von A und B
[a, b [halboffenes Intervall von a bis b	$A \cup B$	Vereinigungsmenge von A und B
∞	unendlich	A\B	Differenzmenge von A und B
a ^b	a hoch b (Potenz)	N	Menge der natürlichen Zahlen
√ n√	Quadratwurzel aus n-te Wurzel aus	Z	Menge der ganzen Zahlen
log _a x	Logarithmus x zur Basis a	Q+	Menge der gebrochenen Zahlen
lg x	Logarithmus x zur Basis 10	Q	Menge der rationalen Zahlen
ln x	Logarithmus x zur Basis e	R	Menge der reellen Zahlen
lb x	Logarithmus x zur Basis 2	P(E) oder p(E)	Wahrscheinlichkeit von Ereignis E

Potenzen		Wurzeln		Logarithmen	
$a^n = a \cdot a \cdot \cdot a$	aBasis	$\sqrt[n]{a} = b \Leftrightarrow b^n = a$	a Radikand	$\log_a b = c \Leftrightarrow a^c = b$	
a ⁰ = 1	nExponent	b > 0	nWurzelexponent	a ∈ R, a > 0, a ≠ 1	aBasis
$a^1 = a$	$a\in\mathbb{R}\backslash\!\{0\},n\in\mathbb{N}$	$a \in \mathbb{R} \land a \ge 0$	$0,\ n\in\mathbb{N}\backslash\{0;1\}$	$b \in \mathbb{R}, b > 0$	bNumerus
$a^{-n} = \frac{1}{a^n}$				$\log_a 1 = 0$ \log_a	a = 1
$a^m \cdot a^n = a^{m+n}$	$a^n\cdot b^n=(a\cdot b)^n$	$\sqrt[m]{a} \cdot \sqrt[n]{a} = \sqrt[m \cdot n]{a^{m+n}}$	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$	$\log_a(u \cdot v) = \log_a u + \log$	_a V
a ^m	a ⁿ (a) ⁿ	₩a	ņ/a ∫a	mit $u, v \in \mathbb{R}$ und $u, v > 0$	• 0
$\frac{a^m}{a^n} = a^{m-n}$	$\frac{a}{b^n} = \left(\frac{a}{b}\right)$	$\frac{\sqrt[m]{a}}{\sqrt[n]{a}} = \sqrt[n-m]{a^{n-m}}$	$\frac{\sqrt{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$	$\log_a \frac{u}{v} = \log_a u - \log_a v$	
$(a^m)^n = a^{m \cdot n}$		$\sqrt[n]{\sqrt[m]{a}} = \sqrt[m-1]{a}$		$\log_a u^r = r \cdot \log_a u$	$r\in \mathbb{R}$
$a^{\frac{1}{n}} = \sqrt[n]{a}$	$a^{-\frac{1}{n}} = \frac{1}{\sqrt[n]{a}}$	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$	$\log_a \sqrt[n]{u} = \frac{1}{n} \log_a u$	$n\in \mathbb{N}$

Quadratische Gleichungen	1		
	allgemeine Form	Normalform	
Gleichung	$ax^2 + bx + c = 0$	$x^2 + px + q = 0$	
Lösungen	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$	$a,b,c,p,q \in \mathbb{R}$; $a \neq 0$
Diskriminante	$D = b^2 - 4ac$	$D = \left(\frac{p}{2}\right)^2 - q$	a,b,c,p,q sind Konstanten
		$D > 0 \Rightarrow L = \{x_1; x_2\}$	
Lösung in ${\mathbb R}$		$D = 0 \Rightarrow L = \{x_1\} = \{x_2\}$	
		D < 0 ⇒ L = Ø	

Statistik		
Lage– und Streumaße		
Modalwert (Modus)	Häufigster Wert unter den Ergebnissen einer Stichprobe	
Mittelwert (arithmetisches Mittel) $\overset{-}{x}$	$\frac{1}{x} = \frac{x_1 + x_2 + + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$	
Zentralwert (Median) z	n ist ungerade: $z = x_{\frac{n+1}{2}}$	
	n ist gerade: $z = \frac{1}{2} (x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$	
Spannweite (Streu- oder Variationsbreite) R	$R = x_{\text{max}} - x_{\text{min}}$	
Mittlere Abweichung vom Zentralwert z bei einer Stichprobe vom Umfang n	$\frac{1}{n}(x_1 - z + x_2 - z + \dots + x_n - z) = \frac{1}{n}\sum_{i=1}^{n} x_i - z $	

01.04.2009 EFB_Formelsammlung MaStat_10.doc

Grundlegende Begriffe	
Zufallsversuch	Versuch mit mehreren möglichen Ergebnissen $\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 2},,\omega_{\scriptscriptstyle r}$
Ergebnismenge (Stichprobenraum) Ω	Menge aller möglichen Ergebnisse $\Omega = \{\omega_{\text{1}}, \omega_{\text{2}},, \omega_{\text{n}}\}$
Ereignis E sicheres Ereignis unmögliches Ereignis Elementarereignis {a} Gegenereignis Ē	Teilmenge der Ergebnismenge Ω E $\subseteq \Omega$ Ereignis, das bei <u>ieder</u> Versuchsdurchführung eintritt Ereignis, das bei <u>keiner</u> Versuchsdurchführung eintritt Ereignis mit nur einem Element Komplementärmenge von E
absolute Häufigkeit H _n (E) des Eintretens von E	Anzahl des Eintretens von E bei n Versuchsdurchführungen
relative Häufigkeit hn(E) des Eintretens von E	$h_n = \frac{H_n(E)}{n}$
Klassische Wahrscheinlichkeit	
 Jedes von endlich vielen Elementarereignissen E hat die gleiche Chance zum Auftreten, kein Elementarereignis ist unmöglich. Das Auftreten eines Elementarereignisses schließt das gleichzeitige Auftreten eines anderen 	$P(E) = \frac{\text{Anzahl der für E günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}}$
Elementarereignisses aus.	
Regeln und Sätze für das Rechnen mit Wahrscheinlichke	iten
$0 \le P(E) \le 1$	
für E = $\{a_1, a_2,, a_k\}$ gilt P(E) = P($\{a_1\}$) + P($\{a_2\}$) + + P($\{a_k\}$)	Summenregel
$P(\Omega) = 1$	Wahrscheinlichkeit des sicheren Ereignisses
P(Ø) = 1	Wahrscheinlichkeit des unmöglichen Ereignisses
$P(\overline{E}) = 1 - P(E)$	Wahrscheinlichkeit des Gegenereignisses
$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$	Additionssatz für zwei Ereignisse

Kombinatorik

Binomialkoeffizienten

$$\binom{n}{k} = \frac{n(n-1)(n-2)...[n-(k-1)]}{1 \cdot 2 \cdot 3 \cdot ... \cdot k} = \frac{n!}{k!(n-k)!}$$

Permutation	Jede mögliche Anordnung von n Elementen, in der alle Elemente verwendet werden	
Anzahl von Permutationen		
ohne Wiederholung	von n verschiedenen Elementen $P_n = n! \label{eq:Pn}$	
mit Wiederholung	von n Elementen mit k Klassen von untereinander gleichen Elementen. Die Klassen enthalten n_1, n_2, \ldots, n_k Elemente. $\overline{P_n} = \frac{n!}{n_1! n_2! \ldots \cdot n_k!}$	
Variationen von n Elementen zur k-ten Klasse	Jede mögliche Anordnung (mit Berücksichtigung der Reihenfolge) aus je k von n Elementen	
Anzahl von Variationen k-ter Klasse	9	
von n verschiedenen Elementen ohne Wiederholung	$V_n^k = \frac{n!}{(n-k)!}$	
von n verschiedenen Elementen mit Wiederholung	$\overline{V_n^k} = n^k$	
Kombinationen von n Elementen zur k-ten Klasse	Jede mögliche Anordnung (ohne Berücksichtigung der Reihenfolge) aus je k von n Elementen	
Anzahl von Kombinationen k-ter Kl	asse	
von n verschiedenen Elementen <u>ohne</u> Wiederholung	$C_n^k = \frac{n!}{(n-k)! \cdot k!} = \binom{n}{k}$	
von n verschiedenen Elementen mit Wiederholung	$\overline{C_n^k} = \binom{n+k-1}{k}$	

Summenregel: Die Wahrscheinlichkeit eines Ereignisses ist gleich der Summe aller Pfadwahrscheinlichkeiten seiner

entlang des zugehörigen Pfades (Pfadwahrscheinlichkeit).

zugehörigen Elementarereignisse.