Anforderungen MATHEMATIK

1. Beherrschung der Grundlagen der Mengenlehre

Nutzung verschiedener Schreibweisen für Mengen

Aufzählende Schreibweise: M = {a, b, c, ...}

Beschreibende Schreibweise: M = { $x \in \mathbb{Q} \mid -3 \le x < 3$ }

auch [a; b] = $\{x \in \mathbb{R} \mid a \le x \le b\}$ bzw.]a; b[= $\{x \in \mathbb{R} \mid a < x < b\}$ und halboffene Intervalle

Kenntnis und Anwendung der Begriffe der Mengenrelation und Mengenoperation

Mengenrelation: Mengengleichheit $M_1 = M_2$

Teilmenge $M_1 \subseteq M_2$ bzw. echte Teilmenge $M_1 \subseteq M_2$

Mengenoperationen: Vereinigung $M_1 \cup M_2$; Durchschnitt $M_1 \cap M_2$; Differenz $M_1 \setminus M_2$

Potenzmenge $P(M) = \{ T \mid T \subseteq M \}$

2. Rechnen im Bereich der reellen Zahlen

- Rechenoperationen unter Verwendung von Variablen Addition und Subtraktion von Summen; Auflösen und Setzen von Klammern + (a+b-c) = a+b-c - (a+b-c) = -a-b+c

Multiplikation und Division von Summen; Ausklammern eines gemeinsamen Faktors

Anwenden von binomischen Formeln

$$(a+b)^2 = a^2 + 2ab + b^2 \qquad (a-b)^2 = a^2 - 2ab + b^2 \qquad (a+b)(a-b) = a^2 - b^2$$
Umformen von Produkt in Summe und umgekehrt

Rechnen mit Brüchen (Quotienten)

Erweitern und Kürzen;

Addition (Subtraktion), Multiplikation und Division von Quotienten (auch Mehrfachbrüche)

– Berechnen von Potenzausdrücken $\underbrace{a^n=a\cdot a\cdot ...\cdot a}_{n\ Faktoren\ a}$ $a\in\mathbb{R}\setminus\{0\},\ n\in\mathbb{N}$

Anwenden der Potenzgesetze

 $- \quad \text{Berechnen von Wurzelausdr\"{u}cken } \sqrt[n]{a} = b \quad \Leftrightarrow \quad b^n = a \quad a \in \mathbb{R}, \ a \geq 0, \ n \in \mathbb{N} \setminus \{0, \ 1\}$

Anwenden der Wurzelgesetze;

Umformen von Potenzen mit gebrochenen Exponenten $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ (a>0; m, n ∈ Z; n>0)

- Berechnung von logarithmischen Ausdrücken $\log_a b = c$ \Leftrightarrow $a^c = b$ $a, b \in \mathbb{R}$, a > 0, $a \neq 1, b > 0$ Anwenden der Logarithmengesetze

3. Lösen von Gleichungen und Ungleichungen

- Äquivalentes Umformen und Lösen von linearen Gleichungen und Ungleichungen
 Bestimmung der Lösungsmenge einer Ungleichung in Abhängigkeit des Grundbereichs der Variablen;
 Lösen von Gleichungen und Ungleichungen mit Beträgen
- Lösen linearer Gleichungssysteme mit zwei Variablen
 Anwenden von Lösungsverfahren, z.B. Additions-, Einsetzungs- oder Gleichsetzungsverfahren
- Lösen quadratischer Gleichungen
 Anwenden der Lösungsformel für quadratische Gleichungen
 (für die allgemeine Form ax²+bx+c=0 oder Normalform x²+px+q=0)
- Lösen von Wurzelgleichungen, Exponentialgleichungen, Logarithmengleichungen und goniometrischen Gleichungen
- Überprüfung der Lösung durch Einsetzen in die Ausgangsgleichung (Probe)

4. Lösen praktischer Aufgaben unter Verwendung von Proportionen; Prozentrechnung

Aufstellen und Lösen von Verhältnisgleichungen bei direkten Proportionalität

$$\frac{a_i}{a_j} = \frac{b_i}{b_j} \qquad \qquad \frac{a_i}{oder} = \frac{a_j}{b_i}$$

- Aufstellen und Lösen von Verhältnisgleichungen bei indirekter (umgekehrter) Proportionalität

$$\frac{\mathbf{a}_{i}}{\mathbf{a}_{j}} = \frac{\mathbf{b}_{j}}{\mathbf{b}_{i}}$$
 oder
$$\mathbf{a}_{i} \cdot \mathbf{b}_{i} = \mathbf{a}_{j} \cdot \mathbf{b}_{j}$$

 Lösen von Aufgaben der Prozentrechnung (Berechnung des Grundwertes, Prozentwertes oder des Prozentsatzes);

Anwendung der Aussagen "Steigerung (Senkung) um x Prozent" oder "Steigerung (Senkung) *auf* x Prozent"

5. Kenntnisse der Elementargeometrie

- Kenntnis und Anwenden des Satzes des Pythagoras $a^2 + b^2 = c^2$
- Berechnung des Umfanges und des Flächeninhaltes von Dreiecken, Vierecken und des Kreises
- Berechnung des Oberflächeninhaltes und des Rauminhaltes eines Prismas, Kreiszylinders, Pyramide, Kreiskegels und einer Kugel

6. Eigenschaften elementarer Funktionen

Anwenden der Kenntnisse über reelle Funktionen (x, y ∈ \mathbb{R})

lineare Funktionen y = f(x) = mx + n;

Potenzfunktionen $y = f(x) = ax^n + b \ (n \in \mathbb{Z}) \ und \ y = ax^{\frac{p}{q}} + b \ (p, q \in \mathbb{Z}; q>0);$

Exponentialfunktionen $y = f(x) = a^x + b;$ Logarithmusfunktionen $y = f(x) = \log_a x;$

trigonometrische Funktion $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$

- Bestimmen des Definitions- und Wertebereichs einer Funktion
- Skizzieren des graphischen Verlaufs einer Funktion; Einfluss von Koeffizienten a, b ,m ,n auf die Normalform einer Funktion
- Bestimmung der Umkehrfunktion
- Periodizität und Symmetrie einer Funktion

7. Differentialrechnung

- Kenntnis und Anwendung der Ableitungsregeln zur Ableitung elementarer Funktionen (Konstanten-, Potenz-, Faktor-, Summen-, Produkt-, Quotienten- und Kettenregel);
- Bestimmen lokaler Maxima bzw. Minima einer rationalen Funktion;
- Bestimmen von Nullstellen und Schnittpunkten mit der y-Achse einer rationalen Funktion;
- Bestimmen des Verhaltens im Unendlichen einer rationalen Funktion f(x); Bestimmen der Gleichung der Asymptote einer gebrochenrationalen Funktion;
- Untersuchung von Stetigkeit und Unstetigkeit einer rationalen Funktion; Bestimmen der Polstelle einer gebrochenrationalen Funktion;
- Skizzieren des Graph einer Funktion.

8. Integralrechnung

Kenntnis und Anwendung der Regeln für das Ermitteln von unbestimmten Integralen

Summenregel $\int \left(f_1(x) + f_2(x)\right)\! dx = \int f_1(x) dx + \int f_2(x) dx \; .$

- Berechnung bestimmter Integrale

 $\int_{a}^{b} f(x)dx = F(b) - F(a), \text{ wenn } F(x) \text{ eine Stammfunktion der im Intervall [a; b] stetigen Funktion } f(x) \text{ ist.}$

Literatur und Links zur Wiederholung und Vorbereitung des Tests

- Heinrich, Gottfried; Wenzel, Horst: Übungsaufgaben zur Analysis. Mathematik für Ingenieure und Naturwissenschaftler. Wiesbaden: B. G. Teubner Verlag /GWV Fachverlage GmbH, 1. Auflage November 2005; ISBN 3-8351-0066-1
- Knorrenschild, Michael: Vorkurs Mathematik: ein Übungsbuch für Fachhochschulen von Michael Knorrenschild. München: Fachbuchverlag Leipzig im Carl Hanser Verlag, 2004 dt.; 174 S.: graph. Darst.; ISBN 3-446-22818-7
- 3. Schäfer, Wolfgang: Mathematik-Vorkurs: Übungs- und Arbeitsbuch für Studienanfänger; 5., überarb. Aufl.; Stuttgart; Leipzig; Wiesbaden: Teubner, 2002; dt.; 444 S.; graph. Darst.; ISBN 3-519-10249-8

Links zur Wiederholung und Vorbereitung des Tests

- 1. Schülerlexikon Mathematik http://www.schuelerlexikon.de/SID/2f8160147ed1c58700a19178b693bba4/lexika/masek2/index.htm
- 2. <u>Mathematik online</u> http://www.mathe-online.at/ressourcen/uebersicht.html
- Mathematisches Lexikon
 http://www.mathe-online.at/mathint/lexikon/
- 4. <u>Mathematischer Vorkurs</u> http://www.thphys.uni-heidelberg.de/~hefft/vk1/_

Aufgaben zur Vorbereitung der Eignungsprüfung für Berufstätige

Fach Mathematik

1. Gegeben sind die Mengen

$$A = \{ x \in \mathbb{Z} \mid -1 < x < 6 \}$$

$$B = \{ x \in \mathbb{N} \mid x \le 3 \}$$

 $C = \{ x \in \mathbb{N} \mid x \text{ ungerade und } x \leq 9 \}$

$$D = \{ x \in \mathbb{N} \mid x \text{ gerade und } x < 10 \}$$

- a) Geben Sie Mengen durch Aufzählen der Elemente an!
- b) Bestimmen Sie A \cup B, A \setminus B, B \setminus A, C \cap D, A \cap C, A \cap D, C \setminus D, (C \cup D) \setminus A

Schreiben Sie die Intervalle als Mengen reeller Zahlen in der beschreibenden Schreibweise mit Ungleichungen! Zum Beispiel: $[m; n] = \{x \in \mathbb{R} \mid m \le x \le n \}$

Berechnen Sie!

a)
$$\frac{1}{15}$$
 =

b)
$$2^{-3} =$$
 c) $4^{2,5} =$

4. Multiplizieren Sie folgende Ausdrücke und fassen Sie zusammen!

a)
$$(7a - 5b)(3a + 4b) - (5a - 9b)(4a - b)$$
 b) $(x + 1)(1 - x)$ c) $(2\sqrt{3} - 3\sqrt{2})^2$ d) $(a^2 + 3b)^2$

b)
$$(x + 1)(1 - x)$$

c)
$$(2\sqrt{3} - 3\sqrt{2})^2$$

d)
$$(a^2 + 3b)^2$$

5. Verwandeln Sie in ein Produkt von Binomen!

a)
$$8ab + 10ac - 12bd - 15cd$$
 b) $4x^2 - 12x + 9$ c) $25a + 40\sqrt{ab} + 16b$ d) $2x - 3y$

c)
$$25a + 40 \sqrt{ab} + 16b$$

d)
$$2x - 3v$$

6. Vereinfachen Sie!

a)
$$\frac{x-y}{2x} - \frac{x+y}{3y}$$

b)
$$\frac{\frac{1}{a} - \frac{1}{b}}{\frac{1}{a} + \frac{1}{b}}$$

c)
$$\frac{x^{m-1}}{y^{2+n}} \cdot \frac{y^{n-1}}{x^{m+2}} \cdot y^3$$

7. Bestimmen Sie x! Prüfen Sie das Ergebnis mit einer Probe!

a)
$$\frac{x+2}{x-2} = \frac{x-4}{x+1}$$

b)
$$\sqrt{3x-3} + \sqrt{4+3x} = \sqrt{6x+25}$$
 c) $\lg(x-1) + \lg 3 = \lg (x^2-1)$

c)
$$\lg(x-1)+\lg 3 = \lg (x^2-1)$$

d)
$$|-3x+2|=5$$

e)
$$x \cdot \ln 9 = \ln 3$$

8. Bestimmen Sie x und y!

$$4x + 3y = 8$$

$$6x + 5y = 13$$

- Die Seite b eines Rechteckes ist doppelt so lang wie die Seite a. Wie groß ist die Diagonale e des Rechteckes?
- 10. Bestimmen Sie für die reelle Funktion $y = \sqrt[3]{x+2}$ den Definitionsbereich X und Wertebereich Y!
- 11. Bilden Sie die Umkehrfunktion von a) y = f(x) = 3x 2 und b) $y = f(x) = -x^3 + 1!$
- 12. Bilden Sie die 1. Ableitung der folgenden Funktionen y = f(x)!

a)
$$f(x) = \frac{1}{12}x^3 + \frac{1}{4}x^2 - \frac{7}{4}x$$
 b) $f(x) = \ln(2 + x^2)$ c) $f(x) = \frac{1}{2} \cdot e^{2x+1}$
d) $f(x) = x^2 \cdot \sin x$ e) $f(x) = \frac{x^2 - x}{3x + 2}$ f) $f(x) = \sqrt{1 - x}$

b)
$$f(x) = \ln (2 + x^2)$$

c)
$$f(x) = \frac{1}{2} \cdot e^{2x+1}$$

d)
$$f(x) = x^2 \cdot \sin x$$

e)f(x) =
$$\frac{x^2 - x}{3x + 2}$$

f)
$$f(x) = \sqrt{1-x}$$

- 13. Gegeben ist die Funktion $f(x) = \frac{1}{2} \cdot x^3 x$.
 - a) Bestimmen Sie die ersten drei Ableitungen f', f" und f""!
 - b) Untersuchen Sie die mögliche Symmetrie von f(x)!
 - c) Bestimmen Sie die Nullstellen, Extremstellen (Maximum; Minimum) und Wendestellen (Wendepunkt) von f(x)!
 - d) Skizzieren Sie den Graph von f(x)!
- 14. Berechnen Sie!

a)
$$\int (x^2 - 4x) dx$$

b)
$$\int \frac{1}{\sqrt{x}} dx$$

a)
$$\int (x^2 - 4x) dx$$
 b) $\int \frac{1}{\sqrt{x}} dx$ c) $\int (2 \cdot \sin x - 3 \cdot \cos x) dx$

d)
$$\int_{-2}^{1} (-x^3 + 4) dx$$
 e) $\int_{0}^{2\pi} \cos x dx$

e)
$$\int_{0}^{2\pi} \cos x \, dx$$

Für technische Fachrichtung

15T. Ein Auto fährt von A nach B mit einer Durchschnittsgeschwindigkeit von 81 kmh-1. Um wie viel Prozent der ursprünglichen Fahrzeit verkürzt sich die Fahrzeit, wenn sich die Geschwindigkeit um durchschnittlich 9 kmh-1 erhöht?

Für wirtschafts-/sozialwissenschaftliche Fachrichtung

15W. In einer Verkaufsaktion wird der Preis des Produktes XXL für einen Monat um 20 % gesenkt. Auf der Grundlage des gesenkten Preises wird einen Monat später der Preis um 20 % wieder angehoben. Was kostet das Produkt XXL nach dieser Preiserhöhung, wenn der Preis vor der Marketingaktion 80 € betrug?

Lösungen

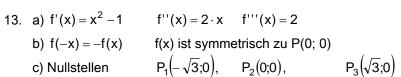
1. a)
$$A = \{0, 1, 2, 3, 4, 5\}$$
 $B = \{0, 1, 2, 3\}$ $C = \{1, 3, 5, 7, 9\}$ $D = \{2, 4, 6, 8\}$ b) $A \cup B = A$, $A \setminus B = \{4, 5\}$, $B \setminus A = \emptyset$, $C \cap D = \emptyset$, $A \cap C = \{1, 3, 5\}$, $A \cap D = \{2, 4\}$, $C \setminus D = C$, $(C \cup D) \setminus A = \{6, 7, 8, 9\}$

$$2. \quad a) \ \{ x \in \mathbb{R} \ | \ m \le x \le n \ \} \qquad \quad b) \ \{ x \in \mathbb{R} \ | \ m \le x \le n \ \} \qquad \quad c) \ \{ x \in \mathbb{R} \ | \ m \le x \le n \ \}$$

3. a)
$$\frac{2}{3}$$
 oder 0,6 $\frac{1}{8}$ oder 0,125 c) 32 d) 0

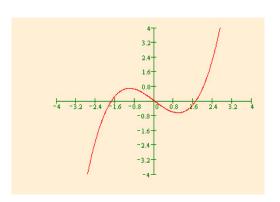
4. a)
$$a^2 + 54ab - 29b^2$$
 b) $1 - x^2$ c) $30 - 12\sqrt{6}$ d) $a^4 + 6a^2b + 9b^2$

5. a)
$$(2a - 3d)(4b + 5c)$$
 b) $(2x - 3)^2$ c) $(5\sqrt{a} + 4\sqrt{b})^2$ d) $(\sqrt{2x} + \sqrt{3y})(\sqrt{2x} - \sqrt{3y})$


6. a)
$$\frac{-2x^2 + xy - 3y^2}{6xy}$$
 b) $\frac{b-a}{b+a}$ c) x^{-3}

7. a)
$$x = \frac{2}{3}$$
 b) $x_1 = 4$, $x_2 = -\frac{13}{3}$ ist keine Lösung c) $x_1 = 2$, $x_2 = 1$ ist keine Lösung d) $x_1 = -1$, $x_2 = \frac{7}{3}$ e) $x = \frac{1}{2}$ f) $x = \frac{\pi}{4}(2k+1)$ $k \in \mathbb{Z}$

8.
$$x = \frac{1}{2}$$
, $y = 2$ 9. $e = a\sqrt{5}$ oder $\frac{b}{2}\sqrt{5}$ 10. $X = [-2; \infty[$, $Y = [0; \infty[$


11. a)
$$y = \frac{1}{3}x + \frac{2}{3}$$
 b) $y = \begin{cases} \sqrt[3]{1-x} & x \le 1 \\ -\sqrt[3]{1-x} & x > 1 \end{cases}$

12. a)
$$y' = \frac{1}{4}x^2 + \frac{1}{2}x - \frac{7}{4}$$
 b) $y' = \frac{2x}{2 + x^2}$ c) $y' = e^{2x+1}$ d) $y' = 2x \cdot \sin x + x^2 \cos x$ e) $y' = \frac{3x^2 + 4x - 2}{(3x + 2)^2}$ f) $y' = -\frac{1}{2\sqrt{1 - x}}$

lokales Maximum $P_4(-1; \frac{2}{3})$ lokales Minimum $P_5(1; -\frac{2}{3})$ Wendepunkt $P_6(0;0)$

d) Graph

14. a) $\frac{1}{3}x^3 - 2 \cdot x^2 + C$ b) $2 \cdot \sqrt{x} + C$ c) $-2 \cdot \cos x - 3 \cdot \sin x + C$ d) $\frac{63}{4}$ e) 0

15T. Die Fahrzeit verkürzt sich um 10%.

15W. Das Produkt XXL kostet nach der Preiserhöhung 76,80 €.

Name:	Prüfungsnummer:

Hinweise:

- Tragen Sie ihren Namen und ihre Prüfungsnummer ein.
- Als Hilfsmittel sind Taschenrechner und die Formelsammlung, die Sie mit den Aufgaben erhalten, erlaubt.
- Schreiben Sie auf die Rückseite, wenn der Platz nicht ausreicht.
- Arbeitszeit: 60 Minuten

Aufgabe 1

a) Berechnen Sie und Vereinfachen Sie den Term (Rechenweg und Ergebnis)!

$$\frac{\frac{1}{2} + \frac{1}{3}}{\frac{3}{2} - \frac{2}{3}} =$$

b) Vereinfachen Sie den Term (Rechenweg und Ergebnis)!

$$\frac{x+5}{x^2-25} =$$

04

01

02

03

Aufgabe 2

Gegeben sind $A \subseteq \mathbb{N}$ (\mathbb{N} Menge der natürlichen Zahlen) und $B \subseteq \mathbb{Z}$ (\mathbb{Z} Menge der ganzen Zahlen). Es sei $A = \{x \mid 1 \le x < 5\}$ und B = [3;7].

Geben Sie alle Elemente an! (zum Beispiel: = {3; 4; 5})!

a) A
$$\cup$$
 B =

05

06

07

Aufgabe 3

Ermitteln Sie die Lösungsmenge für $x \in \mathbb{R}!$ (Rechenweg und Ergebnis)

$$3.1 \qquad 2 \cdot x - 3 < \frac{9 \cdot x - 4}{2}$$

3.2
$$x + \frac{1}{2} = \frac{3}{x}$$

3.3
$$\sqrt{x} - \sqrt{2x-1} = \sqrt{x-1}$$

Cortootauna	1	Darachnen	Cial	/Daahanuraa	ואמייי	Erachaio
Fortsetzung	Autoabe 5	Derechnen	Siei	Rechenwed	1 1111(1	Ergeomsi
	, laigase e.		0.0.	(, a a	

3.4 $6 \cdot \sin x - \frac{3}{\cot x} = 0$ für $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \setminus \{0\}$

20

19

21

22

3.5 $(a^{x+3})^{x-3} = (a^{x-5})^{x+9}$

23

24

25

26

Aufgabe 4

Bestimmen Sie von der reellen Funktion $y = f(x) = \sqrt{x-3}$

a) den Definitionsbereich X,

X =

b) den Wertebereich Y,

Y =

c) die Umkehrfunktion $f^{-1}(x)$ (Rechenweg und Ergebnis)

27

29

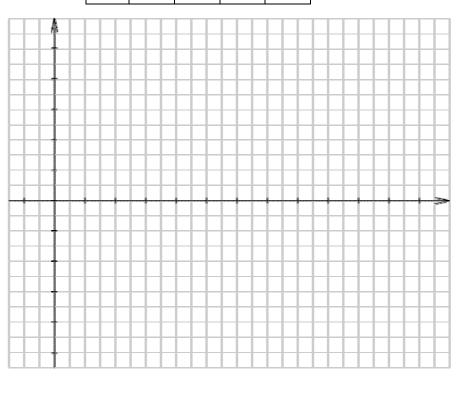
28

Fortsetzung Aufgabe 4: Bestimmen Sie von der reellen Funktion $y = f(x) = \sqrt{x-3}$

d) die Nullstelle von f(x) (Rechenweg und Ergebnis)

31 🗌

e) die 1. Ableitung f'(x)


32

33

34

f) Zeichnen Sie das Bild (Graph) der Funktion f(x)! Berechnen Sie dazu eine Wertetabelle mit drei Funktionswerten!

Х	3	4	7	12
у				

35

Lösen Sie nur <u>eine</u> der folgenden Aufgaben! Kreuzen Sie die gewählte Aufgabe an:	
☐ Aufgabe 5T (Aufgabe nur für Bewerber der technischen Fachrichtung)	
Beantworten Sie! (Rechenweg und Ergebnis)	
Der Durchmesser d_1 eines Öltanks (Kreiszylinder) soll um 20% verkleinert werden. Um wie viel Prozent verringert sich das Volumen V_1 ?	
☐ Aufgabe 5W (Aufgabe nur für Bewerber der Fachrichtung Wirtschaft/Sozialwissenschaft)	
Die Mehrwertsteuer(= p % vom Nettopreis) ist eine Umsatzsteuer: Bruttopreis = Nettopreis + Mehrwertsteuer Ein Auto kostet mit Mehrwertsteuer 23.200 Euro. Wie viel kostet das Auto, wenn die Mehrwertsteuer von 16 % auf 19 % erhöht wird?	
	37
	38
	39
	40

Zeichen	Sprechweise / Bedeutung	Zeichen	Sprechweise / Bedeutung
< ≤	kleiner als kleiner oder gleich	sin	Sinus
> ≥	größer als größer oder gleich	cos	Kosinus
%	Prozent	tan	Tangens
] a, b [offenes Intervall von a bis b	cot	Kotangens
[a, b]	abgeschlossenes Intervall von a bis b	A, B, M	Mengen
[a, b [halboffenes Intervall von a bis b	{ a; b}	Menge mit den Elementen a und b
∞	unendlich	Ø {}	leere Menge
f(x)	f von x (Wert der Funktion f an der Stelle x)	{ x }	Menge aller x, für die gilt:
f'(x)	1. Ableitung der Funktion f	$A \cap B$	Durchschnittsmenge von A und B
dy dx	dy nach dx, 1 Differentialquotient der Funktion y = f(x)	A∪B	Vereinigungsmenge von A und B
a ^b	a hoch b (Potenz)	Α\Β	Differenzmenge von A und B
√ n√	Quadratwurzel aus n-te Wurzel aus	И	Menge der natürlichen Zahlen
log _a x	Logarithmus x zur Basis a	Z	Menge der ganzen Zahlen
lg x	Logarithmus x zur Basis 10	Q+	Menge der gebrochenen Zahlen
In x	Logarithmus x zur Basis e	Q	Menge der rationalen Zahlen
lb x	Logarithmus x zur Basis 2	R	Menge der reellen Zahlen
D	Definitionsbereich einer Funktion	W	Wertebereich einer Funktion

F	Potenzen	W	urzeln	Logarithmen	
$a^n = a \cdot a \cdot \cdot a$	aBasis	$\sqrt[n]{a} = b \Leftrightarrow b^n = a$	a Radikand	$\log_a b = c \Leftrightarrow a^c = b$	
$a^0 = 1$	nExponent	b > 0	nWurzelexponent	a ∈ ℝ, a > 0, a ≠ 1	aBasis
$a^1 = a$	$a \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}$	a ∈ ℝ ∧ a ≥ 0	, n∈ N\{0;1}	$b \in \mathbb{R}, b > 0$	bNumerus
$a^{-n} = \frac{1}{a^n}$				$\log_a 1 = 0$ \log_a	a = 1
$a^m \cdot a^n = a^{m+n}$	$a^n \cdot b^n = (a \cdot b)^n$	$\sqrt[m]{a} \cdot \sqrt[n]{a} = \sqrt[m \cdot n]{a^{m+n}}$	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$	$\log_a(\mathbf{u}\cdot\mathbf{v}) = \log_a\mathbf{u} + \log$	_a V
a ^m	$a^n (a)^n$	m/a	ņ/a la	mit $u, v \in \mathbb{R}$ und $u, v > 0$	> 0
$\frac{a^m}{a^n} = a^{m-n}$	$\frac{a}{b^n} = \left(\frac{a}{b}\right)$	$\frac{\sqrt[m]{a}}{\sqrt[n]{a}} = \sqrt[n-m]{a^{n-m}}$	$\frac{\sqrt{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$	$\log_a \frac{u}{v} = \log_a u - \log_a v$	
$(a^m)^n = a^{m \cdot n}$		$\sqrt[n]{\sqrt[m]{a}} = \sqrt[m:\sqrt{a}$		log _a u ^r = r · log _a u	$r \in \mathbb{R}$
$a^{\frac{1}{n}} = \sqrt[n]{a}$	$a^{-\frac{1}{n}} = \frac{1}{\sqrt[n]{a}}$	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$	$\log_a \sqrt[n]{u} = \frac{1}{n} \log_a u$	$n\in\mathbb{N}$

Quadratische Gleichungen			
	allgemeine Form	Normalform	
Gleichung	$ax^2 + bx + c = 0$	$x^2 + px + q = 0$	
Lösungen	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$	$a,b,c,p,q \in \mathbb{R};$ $a \neq 0$
Diskriminante	$D = b^2 - 4ac$	$D = \left(\frac{p}{2}\right)^2 - q$	a,b,c,p,q sind Konstanten
Lösung in $\mathbb R$		$D > 0 \Rightarrow L = \{x_1; x_2\}$ $D = 0 \Rightarrow L = \{x_1\} = \{x_2\}$ $D < 0 \Rightarrow L = \emptyset$	

Proportionalität					
Sachverhalt	Proportionalität	Verhältnisgleichung			
Größe A a c (a < c) Größe B b d (b < d) Je mehr (größer) A, desto mehr (größer) B	direkte Proportionalität	$\frac{a}{b} = \frac{c}{d} \implies a \cdot d = b \cdot c$			
Größe A a c (a < c) Größe B b d (b > d) Je mehr (größer) A, desto weniger (kleiner) B	indirekte (oder umgekehrte) Proportionalität	$\frac{a}{b} = \frac{d}{c} \implies a \cdot c = b \cdot d$			

Grundbeziehungen zwischen Winkelfunktionen				
$\sin^2\alpha + \cos^2\alpha = 1$	$\tan\alpha = \frac{\sin\alpha}{\cos\alpha}$	$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$		
$\tan\alpha\cdot\cot\alpha=1$	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$		
$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$			

Spezielle Fu	Spezielle Funktionswerte trigonometrischer Funktionen								
	0°	30°	45°	60°	90°	120°	135°	150°	180°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
y = sin x	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$y = \cos x$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1
y = tan x	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$		- √3	-1	$-\frac{1}{3}\sqrt{3}$	0

Ableitungen spezielle	r Funktionen				Nenner ≠ 0
f(x)	f'(x)	f"(x)	f(x)	f'(x)	f"(x)
sin x	cos x	-sin x	arcsin x	$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)\sqrt{1-x^2}}$
cos x	−sin x	- cos x	arccos x	$-\frac{1}{\sqrt{1-x^2}}$	$\frac{-x}{(1-x^2)\sqrt{1-x^2}}$
$\tan x$ $(x \neq (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	2 tan x(1+ tan ² x)	arctan x	$\frac{1}{1+x^2}$	$\frac{-2x}{(1+x^2)^2}$
a ^x (a > 0)	a ^x Ina	a ^x (lna) ²	e ^x	e ^x	e ^x
$log_a x$ (a > 0, a \neq 1, x > 0)	1 x·lna	$\frac{-1}{x^2 \cdot \ln a}$	ln x	$\frac{1}{x}$	$-\frac{1}{x^2}$

Differentiationsregeln	$u(x)$, $v(x)$ differenzierbar; $c \in \mathbb{R}$
Faktorregel	$y = c \cdot u \implies y' = c \cdot u'$
Summenregel	$y = u \pm v \implies y' = u' \pm v'$
Produktregel	$y = u \cdot v \implies y' = u' \cdot v + u \cdot v'$
Quotientenregel	$y = \frac{u}{v} (v \neq 0) \implies y' = \frac{u'v - uv'}{v^2}$
Kettenregel	$y = f(u) \text{ mit } u = g(x) \implies y' = f'(u) \cdot g'(x)$

Untersuchung von Funktione	n	f(x) ist mindestens zweimal differenzierbar	
Symmetrie	symmetrisch zur y-Achse	gerade Funktion	$f(x) = f(-x)$ $x \in D$
	punktsymmetrisch zu P(0;0)	ungerade Funktion	$f(-x) = -f(x)$ $x \in D$
Nullstelle	x_0 mit $f(x_0) = 0$ und $x_0 \in D$		
Monotonie	monoton wachsend in [a,b]	$f'(x) > 0$ für alle $x \in [a,b]$	
	monoton fallend in [a,b]	$f'(x) < 0$ für alle $x \in [a,b]$	
lokale Extremstellen	x _E ist Maximumstelle	$f'(x_E) = 0$ und $f''(x_E) < 0$	
	x _E ist Minimumstelle	$f'(x_E) = 0 \text{ und } f''(x_E) > 0$	
Wendestelle	x _W ist Wendestelle	$f''(x_W) = 0 \text{ und } f'''(x_W) \neq 0$	

Grundbegriffe der Integralrechnung				
Stammfunktion	$F(x)$ ist Stammfunktion von $f(x) \Leftrightarrow F'(x) = f(x)$			
unbestimmtes Integral	$\int f(x) dx = F(x) + C$	C Integrationskonstante		
bestimmtes Integral	$\int_{a}^{b} f(x) dx = F(b) - F(a)$			
Eigenschaften des bestimmten Integrals	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$	$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ für } c \in [a,b]$		

Unbestimmte Integrale		
$\int 0 dx = C$	$\int dx = x + C$	$\int a dx = ax + C (a \neq 0)$
$\int x dx = \frac{1}{2}x^2 + C$	$\int x^n dx = \frac{1}{n+1}x^{n+1} + C (n \in \mathbb{R}, \ n \neq -1)$	$\int \frac{1}{x} dx = \ln x + C$
$\int \sqrt{x} \ dx = \frac{2}{3} \cdot \sqrt{x^3} + C$	$\int a^x dx = \frac{a^x}{\ln a} + C (a \neq 1)$	$\int e^x dx = e^x + C$
$\int \frac{1}{\sqrt{x}} dx = 2 \cdot \sqrt{x} + C (x > 0)$	$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$